home *** CD-ROM | disk | FTP | other *** search
Unknown | 1996-07-15 | 7.1 KB |
open in:
MacOS 8.1
|
Win98
|
DOS
view JSON data
|
view as text
This file was not able to be converted.
This format is not currently supported by dexvert.
Confidence | Program | Detection | Match Type | Support
|
---|
1%
| dexvert
| Eclipse Tutorial (other/eclipseTutorial)
| ext
| Unsupported |
1%
| dexvert
| JuggleKrazy Tutorial (other/juggleKrazyTutorial)
| ext
| Unsupported |
100%
| file
| data
| default
| |
100%
| gt2
| Kopftext: 'TUTOR 06k'
| default (weak)
|
|
hex view+--------+-------------------------+-------------------------+--------+--------+
|00000000| 54 55 54 4f 52 20 30 36 | 6b 1c 00 00 19 00 00 00 |TUTOR 06|k.......|
|00000010| 47 6c 6f 73 73 61 72 79 | 20 66 6f 72 20 43 68 61 |Glossary| for Cha|
|00000020| 70 74 65 72 20 50 10 30 | 2d 31 2d 31 0e 73 30 2d |pter P.0|-1-1.s0-|
|00000030| 31 2d 36 0e 41 62 73 6f | 6c 75 74 65 20 56 61 6c |1-6.Abso|lute Val|
|00000040| 75 65 0f 0d 0a 00 10 30 | 2d 31 2d 31 0e 73 30 2d |ue.....0|-1-1.s0-|
|00000050| 31 2d 31 32 0e 41 64 64 | 69 6e 67 20 46 72 61 63 |1-12.Add|ing Frac|
|00000060| 74 69 6f 6e 73 20 77 69 | 74 68 20 4c 69 6b 65 20 |tions wi|th Like |
|00000070| 44 65 6e 6f 6d 69 6e 61 | 74 6f 72 73 0f 0d 0a 00 |Denomina|tors....|
|00000080| 10 30 2d 31 2d 31 0e 73 | 30 2d 31 2d 31 32 0e 41 |.0-1-1.s|0-1-12.A|
|00000090| 64 64 69 6e 67 20 46 72 | 61 63 74 69 6f 6e 73 20 |dding Fr|actions |
|000000a0| 77 69 74 68 20 55 6e 6c | 69 6b 65 20 44 65 6e 6f |with Unl|ike Deno|
|000000b0| 6d 69 6e 61 74 6f 72 73 | 0f 0d 0a 00 10 30 2d 33 |minators|.....0-3|
|000000c0| 2d 31 0e 73 30 2d 33 2d | 32 0e 41 64 64 69 6e 67 |-1.s0-3-|2.Adding|
|000000d0| 20 50 6f 6c 79 6e 6f 6d | 69 61 6c 73 0f 0d 0a 00 | Polynom|ials....|
|000000e0| 10 30 2d 35 2d 31 0e 73 | 30 2d 35 2d 33 0e 41 64 |.0-5-1.s|0-5-3.Ad|
|000000f0| 64 69 6e 67 20 52 61 74 | 69 6f 6e 61 6c 20 45 78 |ding Rat|ional Ex|
|00000100| 70 72 65 73 73 69 6f 6e | 73 0f 0d 0a 00 10 30 2d |pression|s.....0-|
|00000110| 31 2d 31 0e 73 30 2d 31 | 2d 39 0e 41 64 64 69 74 |1-1.s0-1|-9.Addit|
|00000120| 69 76 65 20 49 64 65 6e | 74 69 74 79 20 50 72 6f |ive Iden|tity Pro|
|00000130| 70 65 72 74 79 0f 0d 0a | 00 10 30 2d 31 2d 31 0e |perty...|..0-1-1.|
|00000140| 73 30 2d 31 2d 38 0e 41 | 64 64 69 74 69 76 65 20 |s0-1-8.A|dditive |
|00000150| 49 6e 76 65 72 73 65 0f | 0d 0a 00 10 30 2d 31 2d |Inverse.|....0-1-|
|00000160| 31 0e 73 30 2d 31 2d 39 | 0e 41 64 64 69 74 69 76 |1.s0-1-9|.Additiv|
|00000170| 65 20 49 6e 76 65 72 73 | 65 20 50 72 6f 70 65 72 |e Invers|e Proper|
|00000180| 74 79 0f 0d 0a 00 10 30 | 2d 31 2d 31 0e 73 30 2d |ty.....0|-1-1.s0-|
|00000190| 31 2d 38 0e 41 64 64 69 | 74 69 6f 6e 0f 0d 0a 00 |1-8.Addi|tion....|
|000001a0| 10 30 2d 31 2d 31 0e 73 | 30 2d 31 2d 37 0e 41 6c |.0-1-1.s|0-1-7.Al|
|000001b0| 67 65 62 72 61 69 63 20 | 45 78 70 72 65 73 73 69 |gebraic |Expressi|
|000001c0| 6f 6e 0f 0d 0a 00 10 30 | 2d 31 2d 31 0e 73 30 2d |on.....0|-1-1.s0-|
|000001d0| 31 2d 39 0e 41 73 73 6f | 63 69 61 74 69 76 65 20 |1-9.Asso|ciative |
|000001e0| 50 72 6f 70 65 72 74 79 | 20 6f 66 20 41 64 64 69 |Property| of Addi|
|000001f0| 74 69 6f 6e 0f 0d 0a 00 | 10 30 2d 31 2d 31 0e 73 |tion....|.0-1-1.s|
|00000200| 30 2d 31 2d 39 0e 41 73 | 73 6f 63 69 61 74 69 76 |0-1-9.As|sociativ|
|00000210| 65 20 50 72 6f 70 65 72 | 74 79 20 6f 66 20 4d 75 |e Proper|ty of Mu|
|00000220| 6c 74 69 70 6c 69 63 61 | 74 69 6f 6e 0f 0d 0a 00 |ltiplica|tion....|
|00000230| 10 30 2d 32 2d 31 0e 73 | 30 2d 32 2d 31 0e 42 61 |.0-2-1.s|0-2-1.Ba|
|00000240| 73 65 0f 0d 0a 00 10 30 | 2d 31 2d 31 0e 73 30 2d |se.....0|-1-1.s0-|
|00000250| 31 2d 39 0e 42 61 73 69 | 63 20 52 75 6c 65 73 20 |1-9.Basi|c Rules |
|00000260| 6f 66 20 41 6c 67 65 62 | 72 61 0f 0d 0a 00 10 30 |of Algeb|ra.....0|
|00000270| 2d 33 2d 31 0e 73 30 2d | 33 2d 31 0e 42 69 6e 6f |-3-1.s0-|3-1.Bino|
|00000280| 6d 69 61 6c 0f 0d 0a 00 | 10 30 2d 31 2d 31 0e 73 |mial....|.0-1-1.s|
|00000290| 30 2d 31 2d 34 0e 42 6f | 75 6e 64 65 64 20 49 6e |0-1-4.Bo|unded In|
|000002a0| 74 65 72 76 61 6c 73 0f | 0d 0a 00 10 30 2d 31 2d |tervals.|....0-1-|
|000002b0| 31 0e 73 30 2d 31 2d 31 | 34 0e 43 61 6e 63 65 6c |1.s0-1-1|4.Cancel|
|000002c0| 6c 61 74 69 6f 6e 20 4c | 61 77 73 0f 0d 0a 00 10 |lation L|aws.....|
|000002d0| 30 2d 37 2d 31 0e 73 30 | 2d 37 2d 31 0e 43 61 72 |0-7-1.s0|-7-1.Car|
|000002e0| 74 65 73 69 61 6e 20 50 | 6c 61 6e 65 0f 0d 0a 00 |tesian P|lane....|
|000002f0| 10 30 2d 31 2d 31 0e 73 | 30 2d 31 2d 37 0e 43 6f |.0-1-1.s|0-1-7.Co|
|00000300| 65 66 66 69 63 69 65 6e | 74 20 6f 66 20 61 20 54 |efficien|t of a T|
|00000310| 65 72 6d 20 69 6e 20 61 | 6e 20 41 6c 67 65 62 72 |erm in a|n Algebr|
|00000320| 61 69 63 20 45 78 70 72 | 65 73 73 69 6f 6e 0f 0d |aic Expr|ession..|
|00000330| 0a 00 10 30 2d 33 2d 31 | 0e 73 30 2d 33 2d 31 0e |...0-3-1|.s0-3-1.|
|00000340| 43 6f 65 66 66 69 63 69 | 65 6e 74 20 6f 66 20 61 |Coeffici|ent of a|
|00000350| 20 54 65 72 6d 20 69 6e | 20 61 20 50 6f 6c 79 6e | Term in| a Polyn|
|00000360| 6f 6d 69 61 6c 0f 0d 0a | 00 10 30 2d 34 2d 31 0e |omial...|..0-4-1.|
|00000370| 73 30 2d 34 2d 31 0e 43 | 6f 6d 6d 6f 6e 20 46 61 |s0-4-1.C|ommon Fa|
|00000380| 63 74 6f 72 0f 0d 0a 00 | 10 30 2d 31 2d 31 0e 73 |ctor....|.0-1-1.s|
|00000390| 30 2d 31 2d 39 0e 43 6f | 6d 6d 75 74 61 74 69 76 |0-1-9.Co|mmutativ|
|000003a0| 65 20 50 72 6f 70 65 72 | 74 79 20 6f 66 20 41 64 |e Proper|ty of Ad|
|000003b0| 64 69 74 69 6f 6e 0f 0d | 0a 00 10 30 2d 31 2d 31 |dition..|...0-1-1|
|000003c0| 0e 73 30 2d 31 2d 39 0e | 43 6f 6d 6d 75 74 61 74 |.s0-1-9.|Commutat|
|000003d0| 69 76 65 20 50 72 6f 70 | 65 72 74 79 20 6f 66 20 |ive Prop|erty of |
|000003e0| 4d 75 6c 74 69 70 6c 69 | 63 61 74 69 6f 6e 0f 0d |Multipli|cation..|
|000003f0| 0a 00 10 30 2d 31 2d 31 | 0e 73 30 2d 31 2d 31 33 |...0-1-1|.s0-1-13|
|00000400| 0e 43 6f 6d 70 6f 73 69 | 74 65 0f 0d 0a 00 10 30 |.Composi|te.....0|
|00000410| 2d 35 2d 31 0e 73 30 2d | 35 2d 34 0e 43 6f 6d 70 |-5-1.s0-|5-4.Comp|
|00000420| 6f 75 6e 64 20 46 72 61 | 63 74 69 6f 6e 73 0f 0d |ound Fra|ctions..|
|00000430| 0a 00 10 30 2d 32 2d 31 | 0e 73 30 2d 32 2d 39 0e |...0-2-1|.s0-2-9.|
|00000440| 43 6f 6e 6a 75 67 61 74 | 65 0f 0d 0a 00 10 30 2d |Conjugat|e.....0-|
|00000450| 31 2d 31 0e 73 30 2d 31 | 2d 37 0e 43 6f 6e 73 74 |1-1.s0-1|-7.Const|
|00000460| 61 6e 74 20 54 65 72 6d | 20 6f 66 20 61 6e 20 41 |ant Term| of an A|
|00000470| 6c 67 65 62 72 61 69 63 | 20 45 78 70 72 65 73 73 |lgebraic| Express|
|00000480| 69 6f 6e 0f 0d 0a 00 10 | 30 2d 33 2d 31 0e 73 30 |ion.....|0-3-1.s0|
|00000490| 2d 33 2d 31 0e 43 6f 6e | 73 74 61 6e 74 20 54 65 |-3-1.Con|stant Te|
|000004a0| 72 6d 20 6f 66 20 61 20 | 50 6f 6c 79 6e 6f 6d 69 |rm of a |Polynomi|
|000004b0| 61 6c 0f 0d 0a 00 10 30 | 2d 31 2d 31 0e 73 30 2d |al.....0|-1-1.s0-|
|000004c0| 31 2d 37 0e 43 6f 6e 73 | 74 61 6e 74 73 0f 0d 0a |1-7.Cons|tants...|
|000004d0| 00 10 30 2d 37 2d 31 0e | 73 30 2d 37 2d 32 0e 43 |..0-7-1.|s0-7-2.C|
|000004e0| 6f 6f 72 64 69 6e 61 74 | 65 73 20 6f 66 20 61 20 |oordinat|es of a |
|000004f0| 50 6f 69 6e 74 0f 0d 0a | 00 10 30 2d 33 2d 31 0e |Point...|..0-3-1.|
|00000500| 73 30 2d 33 2d 34 0e 43 | 75 62 65 20 6f 66 20 61 |s0-3-4.C|ube of a|
|00000510| 20 42 69 6e 6f 6d 69 61 | 6c 0f 0d 0a 00 10 30 2d | Binomia|l.....0-|
|00000520| 32 2d 31 0e 73 30 2d 32 | 2d 35 0e 43 75 62 65 20 |2-1.s0-2|-5.Cube |
|00000530| 52 6f 6f 74 20 6f 66 20 | 61 20 4e 75 6d 62 65 72 |Root of |a Number|
|00000540| 0f 0d 0a 00 10 30 2d 31 | 2d 31 0e 73 30 2d 31 2d |.....0-1|-1.s0-1-|
|00000550| 33 0e 44 65 66 69 6e 69 | 74 69 6f 6e 20 6f 66 20 |3.Defini|tion of |
|00000560| 4f 72 64 65 72 20 6f 6e | 20 74 68 65 20 52 65 61 |Order on| the Rea|
|00000570| 6c 20 4e 75 6d 62 65 72 | 20 4c 69 6e 65 0f 0d 0a |l Number| Line...|
|00000580| 00 10 30 2d 32 2d 31 0e | 73 30 2d 32 2d 31 30 0e |..0-2-1.|s0-2-10.|
|00000590| 44 65 66 69 6e 69 74 69 | 6f 6e 20 6f 66 20 52 61 |Definiti|on of Ra|
|000005a0| 74 69 6f 6e 61 6c 20 45 | 78 70 6f 6e 65 6e 74 73 |tional E|xponents|
|000005b0| 0f 0d 0a 00 10 30 2d 32 | 2d 31 0e 73 30 2d 32 2d |.....0-2|-1.s0-2-|
|000005c0| 35 0e 44 65 66 69 6e 69 | 74 69 6f 6e 20 6f 66 20 |5.Defini|tion of |
|000005d0| 74 68 65 20 11 33 6e 11 | 31 74 68 20 52 6f 6f 74 |the .3n.|1th Root|
|000005e0| 20 6f 66 20 61 20 4e 75 | 6d 62 65 72 0f 0d 0a 00 | of a Nu|mber....|
|000005f0| 10 30 2d 33 2d 31 0e 73 | 30 2d 33 2d 31 0e 44 65 |.0-3-1.s|0-3-1.De|
|00000600| 67 72 65 65 20 6f 66 20 | 61 20 50 6f 6c 79 6e 6f |gree of |a Polyno|
|00000610| 6d 69 61 6c 0f 0d 0a 00 | 10 30 2d 33 2d 31 0e 73 |mial....|.0-3-1.s|
|00000620| 30 2d 33 2d 31 0e 44 65 | 67 72 65 65 20 6f 66 20 |0-3-1.De|gree of |
|00000630| 61 20 54 65 72 6d 0f 0d | 0a 00 10 30 2d 31 2d 31 |a Term..|...0-1-1|
|00000640| 0e 73 30 2d 31 2d 38 0e | 44 65 6e 6f 6d 69 6e 61 |.s0-1-8.|Denomina|
|00000650| 74 6f 72 0f 0d 0a 00 10 | 30 2d 34 2d 31 0e 73 30 |tor.....|0-4-1.s0|
|00000660| 2d 34 2d 34 0e 44 69 66 | 66 65 72 65 6e 63 65 20 |-4-4.Dif|ference |
|00000670| 6f 66 20 54 77 6f 20 43 | 75 62 65 73 2c 20 46 61 |of Two C|ubes, Fa|
|00000680| 63 74 6f 72 69 6e 67 20 | 74 68 65 0f 0d 0a 00 10 |ctoring |the.....|
|00000690| 30 2d 34 2d 31 0e 73 30 | 2d 34 2d 32 0e 44 69 66 |0-4-1.s0|-4-2.Dif|
|000006a0| 66 65 72 65 6e 63 65 20 | 6f 66 20 54 77 6f 20 53 |ference |of Two S|
|000006b0| 71 75 61 72 65 73 2c 20 | 46 61 63 74 6f 72 69 6e |quares, |Factorin|
|000006c0| 67 20 74 68 65 0f 20 0d | 0a 00 10 30 2d 31 2d 31 |g the. .|...0-1-1|
|000006d0| 0e 73 30 2d 31 2d 36 0e | 44 69 73 74 61 6e 63 65 |.s0-1-6.|Distance|
|000006e0| 20 42 65 74 77 65 65 6e | 20 54 77 6f 20 4e 75 6d | Between| Two Num|
|000006f0| 62 65 72 73 0f 0d 0a 00 | 10 30 2d 37 2d 31 0e 73 |bers....|.0-7-1.s|
|00000700| 30 2d 37 2d 33 0e 44 69 | 73 74 61 6e 63 65 20 42 |0-7-3.Di|stance B|
|00000710| 65 74 77 65 65 6e 20 54 | 77 6f 20 50 6f 69 6e 74 |etween T|wo Point|
|00000720| 73 20 69 6e 20 74 68 65 | 20 50 6c 61 6e 65 0f 0d |s in the| Plane..|
|00000730| 0a 00 10 30 2d 37 2d 31 | 0e 73 30 2d 37 2d 33 0e |...0-7-1|.s0-7-3.|
|00000740| 44 69 73 74 61 6e 63 65 | 20 46 6f 72 6d 75 6c 61 |Distance| Formula|
|00000750| 0f 0d 0a 00 10 30 2d 31 | 2d 31 0e 73 30 2d 31 2d |.....0-1|-1.s0-1-|
|00000760| 39 0e 44 69 73 74 72 69 | 62 75 74 69 76 65 20 50 |9.Distri|butive P|
|00000770| 72 6f 70 65 72 74 79 0f | 0d 0a 00 10 30 2d 31 2d |roperty.|....0-1-|
|00000780| 31 0e 73 30 2d 31 2d 31 | 32 0e 44 69 76 69 64 69 |1.s0-1-1|2.Dividi|
|00000790| 6e 67 20 46 72 61 63 74 | 69 6f 6e 73 0f 0d 0a 00 |ng Fract|ions....|
|000007a0| 10 30 2d 35 2d 31 0e 73 | 30 2d 35 2d 33 0e 44 69 |.0-5-1.s|0-5-3.Di|
|000007b0| 76 69 64 69 6e 67 20 52 | 61 74 69 6f 6e 61 6c 20 |viding R|ational |
|000007c0| 45 78 70 72 65 73 73 69 | 6f 6e 73 0f 0d 0a 00 10 |Expressi|ons.....|
|000007d0| 30 2d 31 2d 31 0e 73 30 | 2d 31 2d 38 0e 44 69 76 |0-1-1.s0|-1-8.Div|
|000007e0| 69 73 69 6f 6e 0f 0d 0a | 00 10 30 2d 31 2d 31 0e |ision...|..0-1-1.|
|000007f0| 73 30 2d 31 2d 31 31 0e | 44 69 76 69 73 69 6f 6e |s0-1-11.|Division|
|00000800| 20 62 79 20 5a 65 72 6f | 0f 0d 0a 00 10 30 2d 31 | by Zero|.....0-1|
|00000810| 2d 31 0e 73 30 2d 31 2d | 31 33 0e 44 69 76 69 73 |-1.s0-1-|13.Divis|
|00000820| 6f 72 73 0f 0d 0a 00 10 | 30 2d 35 2d 31 0e 73 30 |ors.....|0-5-1.s0|
|00000830| 2d 35 2d 31 0e 44 6f 6d | 61 69 6e 20 6f 66 20 61 |-5-1.Dom|ain of a|
|00000840| 6e 20 45 78 70 72 65 73 | 73 69 6f 6e 0f 0d 0a 00 |n Expres|sion....|
|00000850| 10 30 2d 31 2d 31 0e 73 | 30 2d 31 2d 34 0e 11 31 |.0-1-1.s|0-1-4..1|
|00000860| 45 6e 64 70 6f 69 6e 74 | 73 0f 0d 0a 00 10 30 2d |Endpoint|s.....0-|
|00000870| 31 2d 31 0e 73 30 2d 31 | 2d 31 34 0e 45 71 75 61 |1-1.s0-1|-14.Equa|
|00000880| 6c 69 74 79 2c 20 50 72 | 6f 70 65 72 74 69 65 73 |lity, Pr|operties|
|00000890| 20 6f 66 0f 0d 0a 00 10 | 30 2d 35 2d 31 0e 73 30 | of.....|0-5-1.s0|
|000008a0| 2d 35 2d 31 0e 45 71 75 | 69 76 61 6c 65 6e 74 20 |-5-1.Equ|ivalent |
|000008b0| 45 78 70 72 65 73 73 69 | 6f 6e 73 0f 0d 0a 00 10 |Expressi|ons.....|
|000008c0| 30 2d 31 2d 31 0e 73 30 | 2d 31 2d 31 32 0e 45 71 |0-1-1.s0|-1-12.Eq|
|000008d0| 75 69 76 61 6c 65 6e 74 | 20 46 72 61 63 74 69 6f |uivalent| Fractio|
|000008e0| 6e 73 0f 0d 0a 00 10 30 | 2d 31 2d 31 0e 73 30 2d |ns.....0|-1-1.s0-|
|000008f0| 31 2d 37 0e 45 76 61 6c | 75 61 74 69 6e 67 20 61 |1-7.Eval|uating a|
|00000900| 6e 20 41 6c 67 65 62 72 | 61 69 63 20 45 78 70 72 |n Algebr|aic Expr|
|00000910| 65 73 73 69 6f 6e 0f 0d | 0a 00 10 30 2d 32 2d 31 |ession..|...0-2-1|
|00000920| 0e 73 30 2d 32 2d 31 31 | 0e 45 76 61 6c 75 61 74 |.s0-2-11|.Evaluat|
|00000930| 69 6e 67 20 52 61 64 69 | 63 61 6c 73 20 6f 6e 20 |ing Radi|cals on |
|00000940| 61 20 43 61 6c 63 75 6c | 61 74 6f 72 0f 0d 0a 00 |a Calcul|ator....|
|00000950| 10 30 2d 32 2d 31 0e 73 | 30 2d 32 2d 31 0e 45 78 |.0-2-1.s|0-2-1.Ex|
|00000960| 70 6f 6e 65 6e 74 0f 0d | 0a 00 10 30 2d 32 2d 31 |ponent..|...0-2-1|
|00000970| 0e 73 30 2d 32 2d 31 0e | 45 78 70 6f 6e 65 6e 74 |.s0-2-1.|Exponent|
|00000980| 69 61 6c 20 46 6f 72 6d | 0f 0d 0a 00 10 30 2d 32 |ial Form|.....0-2|
|00000990| 2d 31 0e 73 30 2d 32 2d | 31 0e 45 78 70 6f 6e 65 |-1.s0-2-|1.Expone|
|000009a0| 6e 74 69 61 6c 20 4e 6f | 74 61 74 69 6f 6e 0f 0d |ntial No|tation..|
|000009b0| 0a 00 10 30 2d 32 2d 31 | 0e 73 30 2d 32 2d 32 0e |...0-2-1|.s0-2-2.|
|000009c0| 45 78 70 6f 6e 65 6e 74 | 73 2c 20 50 72 6f 70 65 |Exponent|s, Prope|
|000009d0| 72 74 69 65 73 20 6f 66 | 0f 0d 0a 00 10 30 2d 35 |rties of|.....0-5|
|000009e0| 2d 31 0e 73 30 2d 35 2d | 31 0e 45 78 70 72 65 73 |-1.s0-5-|1.Expres|
|000009f0| 73 69 6f 6e 2c 20 44 6f | 6d 61 69 6e 20 6f 66 20 |sion, Do|main of |
|00000a00| 61 6e 0f 0d 0a 00 10 30 | 2d 34 2d 31 0e 73 30 2d |an.....0|-4-1.s0-|
|00000a10| 34 2d 31 0e 46 61 63 74 | 6f 72 69 6e 67 0f 0d 0a |4-1.Fact|oring...|
|00000a20| 00 10 30 2d 34 2d 31 0e | 73 30 2d 34 2d 33 0e 46 |..0-4-1.|s0-4-3.F|
|00000a30| 61 63 74 6f 72 69 6e 67 | 20 61 20 50 65 72 66 65 |actoring| a Perfe|
|00000a40| 63 74 20 53 71 75 61 72 | 65 20 54 72 69 6e 6f 6d |ct Squar|e Trinom|
|00000a50| 69 61 6c 0f 0d 0a 00 10 | 30 2d 34 2d 31 0e 73 30 |ial.....|0-4-1.s0|
|00000a60| 2d 34 2d 36 0e 46 61 63 | 74 6f 72 69 6e 67 20 62 |-4-6.Fac|toring b|
|00000a70| 79 20 47 72 6f 75 70 69 | 6e 67 0f 0d 0b 00 20 20 |y Groupi|ng.... |
|00000a80| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000a90| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000aa0| 20 12 33 11 32 32 11 31 | 12 30 0d 0b 00 10 30 2d | .3.22.1|.0....0-|
|00000ab0| 34 2d 31 0e 73 30 2d 34 | 2d 35 0e 46 61 63 74 6f |4-1.s0-4|-5.Facto|
|00000ac0| 72 69 6e 67 20 54 72 69 | 6e 6f 6d 69 61 6c 73 20 |ring Tri|nomials |
|00000ad0| 6f 66 20 74 68 65 20 46 | 6f 72 6d 20 11 33 61 78 |of the F|orm .3ax|
|00000ae0| 11 31 20 20 2b 20 11 33 | 62 78 11 31 20 2b 20 11 |.1 + .3|bx.1 + .|
|00000af0| 33 63 11 31 0f 0d 0a 00 | 10 30 2d 34 2d 31 0e 73 |3c.1....|.0-4-1.s|
|00000b00| 30 2d 34 2d 34 0e 46 61 | 63 74 6f 72 69 6e 67 20 |0-4-4.Fa|ctoring |
|00000b10| 74 68 65 20 44 69 66 66 | 65 72 65 6e 63 65 20 6f |the Diff|erence o|
|00000b20| 66 20 54 77 6f 20 43 75 | 62 65 73 0f 0d 0a 00 10 |f Two Cu|bes.....|
|00000b30| 30 2d 34 2d 31 0e 73 30 | 2d 34 2d 32 0e 46 61 63 |0-4-1.s0|-4-2.Fac|
|00000b40| 74 6f 72 69 6e 67 20 74 | 68 65 20 44 69 66 66 65 |toring t|he Diffe|
|00000b50| 72 65 6e 63 65 20 6f 66 | 20 54 77 6f 20 53 71 75 |rence of| Two Squ|
|00000b60| 61 72 65 73 0f 0d 0a 00 | 10 30 2d 34 2d 31 0e 73 |ares....|.0-4-1.s|
|00000b70| 30 2d 34 2d 34 0e 46 61 | 63 74 6f 72 69 6e 67 20 |0-4-4.Fa|ctoring |
|00000b80| 74 68 65 20 53 75 6d 20 | 6f 66 20 54 77 6f 20 43 |the Sum |of Two C|
|00000b90| 75 62 65 73 0f 0d 0a 00 | 10 30 2d 31 2d 31 0e 73 |ubes....|.0-1-1.s|
|00000ba0| 30 2d 31 2d 31 33 0e 46 | 61 63 74 6f 72 73 0f 0d |0-1-13.F|actors..|
|00000bb0| 0a 00 10 30 2d 33 2d 31 | 0e 73 30 2d 33 2d 33 0e |...0-3-1|.s0-3-3.|
|00000bc0| 46 4f 49 4c 20 4d 65 74 | 68 6f 64 0f 0d 0a 00 10 |FOIL Met|hod.....|
|00000bd0| 30 2d 35 2d 31 0e 73 30 | 2d 35 2d 32 0e 46 72 61 |0-5-1.s0|-5-2.Fra|
|00000be0| 63 74 69 6f 6e 61 6c 20 | 45 78 70 72 65 73 73 69 |ctional |Expressi|
|00000bf0| 6f 6e 0f 0d 0a 00 10 30 | 2d 31 2d 31 0e 73 30 2d |on.....0|-1-1.s0-|
|00000c00| 31 2d 31 32 0e 46 72 61 | 63 74 69 6f 6e 73 2c 20 |1-12.Fra|ctions, |
|00000c10| 50 72 6f 70 65 72 74 69 | 65 73 20 6f 66 0f 20 0d |Properti|es of. .|
|00000c20| 0a 00 10 30 2d 31 2d 31 | 0e 73 30 2d 31 2d 31 33 |...0-1-1|.s0-1-13|
|00000c30| 0e 46 75 6e 64 61 6d 65 | 6e 74 61 6c 20 54 68 65 |.Fundame|ntal The|
|00000c40| 6f 72 65 6d 20 6f 66 20 | 41 72 69 74 68 6d 65 74 |orem of |Arithmet|
|00000c50| 69 63 0f 0d 0a 00 10 30 | 2d 31 2d 31 0e 73 30 2d |ic.....0|-1-1.s0-|
|00000c60| 31 2d 31 32 0e 47 65 6e | 65 72 61 74 69 6e 67 20 |1-12.Gen|erating |
|00000c70| 45 71 75 69 76 61 6c 65 | 6e 74 20 46 72 61 63 74 |Equivale|nt Fract|
|00000c80| 69 6f 6e 73 0f 0d 0a 00 | 10 30 2d 31 2d 31 0e 73 |ions....|.0-1-1.s|
|00000c90| 30 2d 31 2d 34 0e 47 72 | 61 70 68 73 20 6f 66 20 |0-1-4.Gr|aphs of |
|00000ca0| 42 6f 75 6e 64 65 64 20 | 49 6e 74 65 72 76 61 6c |Bounded |Interval|
|00000cb0| 73 0f 0d 0a 00 10 30 2d | 31 2d 31 0e 73 30 2d 31 |s.....0-|1-1.s0-1|
|00000cc0| 2d 35 0e 47 72 61 70 68 | 73 20 6f 66 20 55 6e 62 |-5.Graph|s of Unb|
|00000cd0| 6f 75 6e 64 65 64 20 49 | 6e 74 65 72 76 61 6c 73 |ounded I|ntervals|
|00000ce0| 0f 0d 0a 00 10 30 2d 31 | 2d 31 0e 73 30 2d 31 2d |.....0-1|-1.s0-1-|
|00000cf0| 33 0e 47 72 65 61 74 65 | 72 20 54 68 61 6e 0f 0d |3.Greate|r Than..|
|00000d00| 0a 00 10 30 2d 31 2d 31 | 0e 73 30 2d 31 2d 33 0e |...0-1-1|.s0-1-3.|
|00000d10| 47 72 65 61 74 65 72 20 | 54 68 61 6e 20 6f 72 20 |Greater |Than or |
|00000d20| 45 71 75 61 6c 20 54 6f | 0f 0d 0a 00 10 30 2d 34 |Equal To|.....0-4|
|00000d30| 2d 31 0e 73 30 2d 34 2d | 37 0e 47 75 69 64 65 6c |-1.s0-4-|7.Guidel|
|00000d40| 69 6e 65 73 20 66 6f 72 | 20 46 61 63 74 6f 72 69 |ines for| Factori|
|00000d50| 6e 67 20 50 6f 6c 79 6e | 6f 6d 69 61 6c 73 0f 0d |ng Polyn|omials..|
|00000d60| 0a 00 10 30 2d 31 2d 31 | 0e 73 30 2d 31 2d 31 31 |...0-1-1|.s0-1-11|
|00000d70| 0e 49 6e 63 6c 75 73 69 | 76 65 20 4f 72 0f 0d 0a |.Inclusi|ve Or...|
|00000d80| 00 10 30 2d 32 2d 31 0e | 73 30 2d 32 2d 36 0e 49 |..0-2-1.|s0-2-6.I|
|00000d90| 6e 64 65 78 0f 0d 0a 00 | 10 30 2d 31 2d 31 0e 73 |ndex....|.0-1-1.s|
|00000da0| 30 2d 31 2d 33 0e 49 6e | 65 71 75 61 6c 69 74 79 |0-1-3.In|equality|
|00000db0| 20 53 79 6d 62 6f 6c 73 | 0f 0d 0a 00 10 30 2d 31 | Symbols|.....0-1|
|00000dc0| 2d 31 0e 73 30 2d 31 2d | 31 0e 49 6e 74 65 67 65 |-1.s0-1-|1.Intege|
|00000dd0| 72 73 0f 0d 0a 00 10 30 | 2d 31 2d 31 0e 73 30 2d |rs.....0|-1-1.s0-|
|00000de0| 31 2d 34 0e 49 6e 66 69 | 6e 69 74 65 0f 0d 0a 00 |1-4.Infi|nite....|
|00000df0| 10 30 2d 31 2d 31 0e 73 | 30 2d 31 2d 31 0e 49 72 |.0-1-1.s|0-1-1.Ir|
|00000e00| 72 61 74 69 6f 6e 61 6c | 20 4e 75 6d 62 65 72 0f |rational| Number.|
|00000e10| 0d 0a 00 10 30 2d 34 2d | 31 0e 73 30 2d 34 2d 31 |....0-4-|1.s0-4-1|
|00000e20| 0e 49 72 72 65 64 75 63 | 69 62 6c 65 20 4f 76 65 |.Irreduc|ible Ove|
|00000e30| 72 20 74 68 65 20 49 6e | 74 65 67 65 72 73 0f 0d |r the In|tegers..|
|00000e40| 0a 00 10 30 2d 31 2d 31 | 0e 73 30 2d 31 2d 33 0e |...0-1-1|.s0-1-3.|
|00000e50| 4c 61 77 20 6f 66 20 54 | 72 69 63 68 6f 74 6f 6d |Law of T|richotom|
|00000e60| 79 0f 0d 0a 00 10 30 2d | 33 2d 31 0e 73 30 2d 33 |y.....0-|3-1.s0-3|
|00000e70| 2d 31 0e 4c 65 61 64 69 | 6e 67 20 43 6f 65 66 66 |-1.Leadi|ng Coeff|
|00000e80| 69 63 69 65 6e 74 0f 0d | 0a 00 10 30 2d 31 2d 31 |icient..|...0-1-1|
|00000e90| 0e 73 30 2d 31 2d 31 32 | 0e 4c 65 61 73 74 20 43 |.s0-1-12|.Least C|
|00000ea0| 6f 6d 6d 6f 6e 20 44 65 | 6e 6f 6d 69 6e 61 74 6f |ommon De|nominato|
|00000eb0| 72 0f 0d 0a 00 10 30 2d | 31 2d 31 0e 73 30 2d 31 |r.....0-|1-1.s0-1|
|00000ec0| 2d 33 0e 4c 65 73 73 20 | 54 68 61 6e 0f 0d 0a 00 |-3.Less |Than....|
|00000ed0| 10 30 2d 31 2d 31 0e 73 | 30 2d 31 2d 33 0e 4c 65 |.0-1-1.s|0-1-3.Le|
|00000ee0| 73 73 20 54 68 61 6e 20 | 6f 72 20 45 71 75 61 6c |ss Than |or Equal|
|00000ef0| 20 54 6f 0f 0d 0a 00 10 | 30 2d 37 2d 31 0e 73 30 | To.....|0-7-1.s0|
|00000f00| 2d 37 2d 34 0e 4d 69 64 | 70 6f 69 6e 74 20 46 6f |-7-4.Mid|point Fo|
|00000f10| 72 6d 75 6c 61 0f 0d 0a | 00 10 30 2d 37 2d 31 0e |rmula...|..0-7-1.|
|00000f20| 73 30 2d 37 2d 34 0e 4d | 69 64 70 6f 69 6e 74 20 |s0-7-4.M|idpoint |
|00000f30| 6f 66 20 61 20 4c 69 6e | 65 20 53 65 67 6d 65 6e |of a Lin|e Segmen|
|00000f40| 74 0f 0d 0a 00 10 30 2d | 33 2d 31 0e 73 30 2d 33 |t.....0-|3-1.s0-3|
|00000f50| 2d 31 0e 4d 6f 6e 6f 6d | 69 61 6c 0f 0d 0a 00 10 |-1.Monom|ial.....|
|00000f60| 30 2d 31 2d 31 0e 73 30 | 2d 31 2d 38 0e 4d 75 6c |0-1-1.s0|-1-8.Mul|
|00000f70| 74 69 70 6c 69 63 61 74 | 69 6f 6e 0f 0d 0a 00 10 |tiplicat|ion.....|
|00000f80| 30 2d 31 2d 31 0e 73 30 | 2d 31 2d 39 0e 4d 75 6c |0-1-1.s0|-1-9.Mul|
|00000f90| 74 69 70 6c 69 63 61 74 | 69 76 65 20 49 64 65 6e |tiplicat|ive Iden|
|00000fa0| 74 69 74 79 20 50 72 6f | 70 65 72 74 79 0f 0d 0a |tity Pro|perty...|
|00000fb0| 00 10 30 2d 31 2d 31 0e | 73 30 2d 31 2d 38 0e 4d |..0-1-1.|s0-1-8.M|
|00000fc0| 75 6c 74 69 70 6c 69 63 | 61 74 69 76 65 20 49 6e |ultiplic|ative In|
|00000fd0| 76 65 72 73 65 0f 0d 0a | 00 10 30 2d 31 2d 31 0e |verse...|..0-1-1.|
|00000fe0| 73 30 2d 31 2d 39 0e 4d | 75 6c 74 69 70 6c 69 63 |s0-1-9.M|ultiplic|
|00000ff0| 61 74 69 76 65 20 49 6e | 76 65 72 73 65 20 50 72 |ative In|verse Pr|
|00001000| 6f 70 65 72 74 79 0f 0d | 0a 00 10 30 2d 31 2d 31 |operty..|...0-1-1|
|00001010| 0e 73 30 2d 31 2d 31 32 | 0e 4d 75 6c 74 69 70 6c |.s0-1-12|.Multipl|
|00001020| 79 69 6e 67 20 46 72 61 | 63 74 69 6f 6e 73 0f 0d |ying Fra|ctions..|
|00001030| 0a 00 10 30 2d 33 2d 31 | 0e 73 30 2d 33 2d 33 0e |...0-3-1|.s0-3-3.|
|00001040| 4d 75 6c 74 69 70 6c 79 | 69 6e 67 20 50 6f 6c 79 |Multiply|ing Poly|
|00001050| 6e 6f 6d 69 61 6c 73 0f | 0d 0a 00 10 30 2d 35 2d |nomials.|....0-5-|
|00001060| 31 0e 73 30 2d 35 2d 33 | 0e 4d 75 6c 74 69 70 6c |1.s0-5-3|.Multipl|
|00001070| 79 69 6e 67 20 52 61 74 | 69 6f 6e 61 6c 20 45 78 |ying Rat|ional Ex|
|00001080| 70 72 65 73 73 69 6f 6e | 73 0f 0d 0a 00 10 30 2d |pression|s.....0-|
|00001090| 31 2d 31 0e 73 30 2d 31 | 2d 31 30 0e 4e 65 67 61 |1-1.s0-1|-10.Nega|
|000010a0| 74 69 6f 6e 2c 20 50 72 | 6f 70 65 72 74 69 65 73 |tion, Pr|operties|
|000010b0| 20 6f 66 0f 0d 0a 00 10 | 30 2d 31 2d 31 0e 73 30 | of.....|0-1-1.s0|
|000010c0| 2d 31 2d 35 0e 4e 65 67 | 61 74 69 76 65 20 49 6e |-1-5.Neg|ative In|
|000010d0| 66 69 6e 69 74 79 0f 0d | 0a 00 10 30 2d 31 2d 31 |finity..|...0-1-1|
|000010e0| 0e 73 30 2d 31 2d 32 0e | 4e 65 67 61 74 69 76 65 |.s0-1-2.|Negative|
|000010f0| 20 4e 75 6d 62 65 72 73 | 0f 0d 0a 00 10 30 2d 31 | Numbers|.....0-1|
|00001100| 2d 31 0e 73 30 2d 31 2d | 32 0e 4e 6f 6e 6e 65 67 |-1.s0-1-|2.Nonneg|
|00001110| 61 74 69 76 65 0f 0d 0a | 00 10 30 2d 32 2d 31 0e |ative...|..0-2-1.|
|00001120| 73 30 2d 32 2d 35 0e 11 | 33 6e 11 31 74 68 20 52 |s0-2-5..|3n.1th R|
|00001130| 6f 6f 74 0f 0d 0a 00 10 | 30 2d 31 2d 31 0e 73 30 |oot.....|0-1-1.s0|
|00001140| 2d 31 2d 38 0e 4e 75 6d | 65 72 61 74 6f 72 0f 0d |-1-8.Num|erator..|
|00001150| 0a 00 10 30 2d 31 2d 31 | 0e 73 30 2d 31 2d 38 0e |...0-1-1|.s0-1-8.|
|00001160| 4f 70 70 6f 73 69 74 65 | 0f 0d 0a 00 10 30 2d 31 |Opposite|.....0-1|
|00001170| 2d 31 0e 73 30 2d 31 2d | 33 0e 4f 72 64 65 72 0f |-1.s0-1-|3.Order.|
|00001180| 0d 0a 00 10 30 2d 31 2d | 31 0e 73 30 2d 31 2d 33 |....0-1-|1.s0-1-3|
|00001190| 0e 4f 72 64 65 72 20 6f | 6e 20 74 68 65 20 52 65 |.Order o|n the Re|
|000011a0| 61 6c 20 4e 75 6d 62 65 | 72 20 4c 69 6e 65 0f 0d |al Numbe|r Line..|
|000011b0| 0a 00 10 30 2d 37 2d 31 | 0e 73 30 2d 37 2d 32 0e |...0-7-1|.s0-7-2.|
|000011c0| 4f 72 64 65 72 65 64 20 | 50 61 69 72 0f 0d 0a 00 |Ordered |Pair....|
|000011d0| 10 30 2d 37 2d 31 0e 73 | 30 2d 37 2d 31 0e 4f 72 |.0-7-1.s|0-7-1.Or|
|000011e0| 69 67 69 6e 20 28 43 61 | 72 74 65 73 69 61 6e 20 |igin (Ca|rtesian |
|000011f0| 50 6c 61 6e 65 29 0f 0d | 0a 00 10 30 2d 31 2d 31 |Plane)..|...0-1-1|
|00001200| 0e 73 30 2d 31 2d 32 0e | 4f 72 69 67 69 6e 20 28 |.s0-1-2.|Origin (|
|00001210| 52 65 61 6c 20 4e 75 6d | 62 65 72 20 4c 69 6e 65 |Real Num|ber Line|
|00001220| 29 0f 0d 0a 00 10 30 2d | 34 2d 31 0e 73 30 2d 34 |).....0-|4-1.s0-4|
|00001230| 2d 33 0e 50 65 72 66 65 | 63 74 20 53 71 75 61 72 |-3.Perfe|ct Squar|
|00001240| 65 20 54 72 69 6e 6f 6d | 69 61 6c 2c 20 46 61 63 |e Trinom|ial, Fac|
|00001250| 74 6f 72 69 6e 67 20 61 | 0f 0d 0a 00 10 30 2d 31 |toring a|.....0-1|
|00001260| 2d 31 0e 73 30 2d 31 2d | 32 0e 50 6c 6f 74 74 69 |-1.s0-1-|2.Plotti|
|00001270| 6e 67 0f 0d 0a 00 10 30 | 2d 37 2d 31 0e 73 30 2d |ng.....0|-7-1.s0-|
|00001280| 37 2d 32 0e 50 6c 6f 74 | 74 69 6e 67 20 61 20 50 |7-2.Plot|ting a P|
|00001290| 6f 69 6e 74 0f 0d 0a 00 | 10 30 2d 33 2d 31 0e 73 |oint....|.0-3-1.s|
|000012a0| 30 2d 33 2d 31 0e 50 6f | 6c 79 6e 6f 6d 69 61 6c |0-3-1.Po|lynomial|
|000012b0| 0f 0d 0a 00 10 30 2d 33 | 2d 31 0e 73 30 2d 33 2d |.....0-3|-1.s0-3-|
|000012c0| 31 0e 50 6f 6c 79 6e 6f | 6d 69 61 6c 20 69 6e 20 |1.Polyno|mial in |
|000012d0| 11 33 78 11 31 0f 0d 0a | 00 10 30 2d 31 2d 31 0e |.3x.1...|..0-1-1.|
|000012e0| 73 30 2d 31 2d 35 0e 50 | 6f 73 69 74 69 76 65 20 |s0-1-5.P|ositive |
|000012f0| 49 6e 66 69 6e 69 74 79 | 0f 0d 0a 00 10 30 2d 31 |Infinity|.....0-1|
|00001300| 2d 31 0e 73 30 2d 31 2d | 32 0e 50 6f 73 69 74 69 |-1.s0-1-|2.Positi|
|00001310| 76 65 20 4e 75 6d 62 65 | 72 73 0f 0d 0a 00 10 30 |ve Numbe|rs.....0|
|00001320| 2d 32 2d 31 0e 73 30 2d | 32 2d 31 0e 50 6f 77 65 |-2-1.s0-|2-1.Powe|
|00001330| 72 0f 0d 0a 00 10 30 2d | 34 2d 31 0e 73 30 2d 34 |r.....0-|4-1.s0-4|
|00001340| 2d 31 0e 50 72 69 6d 65 | 0f 0d 0a 00 10 30 2d 31 |-1.Prime|.....0-1|
|00001350| 2d 31 0e 73 30 2d 31 2d | 31 33 0e 50 72 69 6d 65 |-1.s0-1-|13.Prime|
|00001360| 20 46 61 63 74 6f 72 69 | 7a 61 74 69 6f 6e 0f 0d | Factori|zation..|
|00001370| 0a 00 10 30 2d 31 2d 31 | 0e 73 30 2d 31 2d 31 33 |...0-1-1|.s0-1-13|
|00001380| 0e 50 72 69 6d 65 20 4e | 75 6d 62 65 72 0f 0d 0a |.Prime N|umber...|
|00001390| 00 10 30 2d 32 2d 31 0e | 73 30 2d 32 2d 36 0e 50 |..0-2-1.|s0-2-6.P|
|000013a0| 72 69 6e 63 69 70 61 6c | 20 11 33 6e 11 31 74 68 |rincipal| .3n.1th|
|000013b0| 20 72 6f 6f 74 20 6f 66 | 20 11 33 61 11 31 0f 0d | root of| .3a.1..|
|000013c0| 0a 00 10 30 2d 31 2d 31 | 0e 73 30 2d 31 2d 36 0e |...0-1-1|.s0-1-6.|
|000013d0| 50 72 6f 70 65 72 74 69 | 65 73 20 6f 66 20 41 62 |Properti|es of Ab|
|000013e0| 73 6f 6c 75 74 65 20 56 | 61 6c 75 65 0f 0d 0a 00 |solute V|alue....|
|000013f0| 10 30 2d 31 2d 31 0e 73 | 30 2d 31 2d 31 34 0e 50 |.0-1-1.s|0-1-14.P|
|00001400| 72 6f 70 65 72 74 69 65 | 73 20 6f 66 20 45 71 75 |ropertie|s of Equ|
|00001410| 61 6c 69 74 79 0f 0d 0a | 00 10 30 2d 32 2d 31 0e |ality...|..0-2-1.|
|00001420| 73 30 2d 32 2d 32 0e 50 | 72 6f 70 65 72 74 69 65 |s0-2-2.P|ropertie|
|00001430| 73 20 6f 66 20 45 78 70 | 6f 6e 65 6e 74 73 0f 0d |s of Exp|onents..|
|00001440| 0a 00 10 30 2d 31 2d 31 | 0e 73 30 2d 31 2d 31 32 |...0-1-1|.s0-1-12|
|00001450| 0e 50 72 6f 70 65 72 74 | 69 65 73 20 6f 66 20 46 |.Propert|ies of F|
|00001460| 72 61 63 74 69 6f 6e 73 | 0f 0d 0a 00 10 30 2d 31 |ractions|.....0-1|
|00001470| 2d 31 0e 73 30 2d 31 2d | 31 30 0e 50 72 6f 70 65 |-1.s0-1-|10.Prope|
|00001480| 72 74 69 65 73 20 6f 66 | 20 4e 65 67 61 74 69 6f |rties of| Negatio|
|00001490| 6e 0f 0d 0a 00 10 30 2d | 32 2d 31 0e 73 30 2d 32 |n.....0-|2-1.s0-2|
|000014a0| 2d 37 0e 50 72 6f 70 65 | 72 74 69 65 73 20 6f 66 |-7.Prope|rties of|
|000014b0| 20 52 61 64 69 63 61 6c | 73 0f 0d 0a 00 10 30 2d | Radical|s.....0-|
|000014c0| 31 2d 31 0e 73 30 2d 31 | 2d 31 31 0e 50 72 6f 70 |1-1.s0-1|-11.Prop|
|000014d0| 65 72 74 69 65 73 20 6f | 66 20 5a 65 72 6f 0f 0d |erties o|f Zero..|
|000014e0| 0a 00 10 30 2d 37 2d 31 | 0e 73 30 2d 37 2d 31 0e |...0-7-1|.s0-7-1.|
|000014f0| 51 75 61 64 72 61 6e 74 | 0f 0d 0a 00 10 30 2d 32 |Quadrant|.....0-2|
|00001500| 2d 31 0e 73 30 2d 32 2d | 36 0e 52 61 64 69 63 61 |-1.s0-2-|6.Radica|
|00001510| 6c 20 53 79 6d 62 6f 6c | 0f 0d 0a 00 10 30 2d 32 |l Symbol|.....0-2|
|00001520| 2d 31 0e 73 30 2d 32 2d | 31 31 0e 52 61 64 69 63 |-1.s0-2-|11.Radic|
|00001530| 61 6c 73 2c 20 45 76 61 | 6c 75 61 74 69 6e 67 20 |als, Eva|luating |
|00001540| 6f 6e 20 61 20 43 61 6c | 63 75 6c 61 74 6f 72 0f |on a Cal|culator.|
|00001550| 0d 0a 00 10 30 2d 32 2d | 31 0e 73 30 2d 32 2d 37 |....0-2-|1.s0-2-7|
|00001560| 0e 52 61 64 69 63 61 6c | 73 2c 20 50 72 6f 70 65 |.Radical|s, Prope|
|00001570| 72 74 69 65 73 20 6f 66 | 0f 0d 0a 00 10 30 2d 32 |rties of|.....0-2|
|00001580| 2d 31 0e 73 30 2d 32 2d | 38 0e 52 61 64 69 63 61 |-1.s0-2-|8.Radica|
|00001590| 6c 73 2c 20 53 69 6d 70 | 6c 69 66 79 69 6e 67 0f |ls, Simp|lifying.|
|000015a0| 0d 0a 00 10 30 2d 32 2d | 31 0e 73 30 2d 32 2d 36 |....0-2-|1.s0-2-6|
|000015b0| 0e 52 61 64 69 63 61 6e | 64 0f 0d 0a 00 10 30 2d |.Radican|d.....0-|
|000015c0| 32 2d 31 0e 73 30 2d 32 | 2d 31 30 0e 52 61 74 69 |2-1.s0-2|-10.Rati|
|000015d0| 6f 6e 61 6c 20 45 78 70 | 6f 6e 65 6e 74 73 0f 0d |onal Exp|onents..|
|000015e0| 0a 00 10 30 2d 35 2d 31 | 0e 73 30 2d 35 2d 32 0e |...0-5-1|.s0-5-2.|
|000015f0| 52 61 74 69 6f 6e 61 6c | 20 45 78 70 72 65 73 73 |Rational| Express|
|00001600| 69 6f 6e 0f 0d 0a 00 10 | 30 2d 35 2d 31 0e 73 30 |ion.....|0-5-1.s0|
|00001610| 2d 35 2d 33 0e 52 61 74 | 69 6f 6e 61 6c 20 45 78 |-5-3.Rat|ional Ex|
|00001620| 70 72 65 73 73 69 6f 6e | 73 2c 20 41 64 64 69 6e |pression|s, Addin|
|00001630| 67 20 6f 72 20 53 75 62 | 74 72 61 63 74 69 6e 67 |g or Sub|tracting|
|00001640| 0f 0d 0a 00 10 30 2d 35 | 2d 31 0e 73 30 2d 35 2d |.....0-5|-1.s0-5-|
|00001650| 33 0e 52 61 74 69 6f 6e | 61 6c 20 45 78 70 72 65 |3.Ration|al Expre|
|00001660| 73 73 69 6f 6e 73 2c 20 | 4d 75 6c 74 69 70 6c 79 |ssions, |Multiply|
|00001670| 69 6e 67 20 6f 72 20 44 | 69 76 69 64 69 6e 67 0f |ing or D|ividing.|
|00001680| 0d 0a 00 10 30 2d 31 2d | 31 0e 73 30 2d 31 2d 31 |....0-1-|1.s0-1-1|
|00001690| 0e 52 61 74 69 6f 6e 61 | 6c 20 4e 75 6d 62 65 72 |.Rationa|l Number|
|000016a0| 0f 0d 0a 00 10 30 2d 32 | 2d 31 0e 73 30 2d 32 2d |.....0-2|-1.s0-2-|
|000016b0| 39 0e 52 61 74 69 6f 6e | 61 6c 69 7a 65 20 74 68 |9.Ration|alize th|
|000016c0| 65 20 4e 75 6d 65 72 61 | 74 6f 72 20 6f 72 20 44 |e Numera|tor or D|
|000016d0| 65 6e 6f 6d 69 6e 61 74 | 6f 72 0f 0d 0a 00 10 30 |enominat|or.....0|
|000016e0| 2d 31 2d 31 0e 73 30 2d | 31 2d 32 0e 52 65 61 6c |-1-1.s0-|1-2.Real|
|000016f0| 20 4e 75 6d 62 65 72 20 | 4c 69 6e 65 0f 0d 0a 00 | Number |Line....|
|00001700| 10 30 2d 31 2d 31 0e 73 | 30 2d 31 2d 31 0e 52 65 |.0-1-1.s|0-1-1.Re|
|00001710| 61 6c 20 4e 75 6d 62 65 | 72 73 0f 0d 0a 00 10 30 |al Numbe|rs.....0|
|00001720| 2d 31 2d 31 0e 73 30 2d | 31 2d 38 0e 52 65 63 69 |-1-1.s0-|1-8.Reci|
|00001730| 70 72 6f 63 61 6c 0f 0d | 0a 00 10 30 2d 37 2d 31 |procal..|...0-7-1|
|00001740| 0e 73 30 2d 37 2d 31 0e | 52 65 63 74 61 6e 67 75 |.s0-7-1.|Rectangu|
|00001750| 6c 61 72 20 43 6f 6f 72 | 64 69 6e 61 74 65 20 53 |lar Coor|dinate S|
|00001760| 79 73 74 65 6d 0f 0d 0a | 00 10 30 2d 31 2d 31 0e |ystem...|..0-1-1.|
|00001770| 73 30 2d 31 2d 31 0e 52 | 65 70 65 61 74 69 6e 67 |s0-1-1.R|epeating|
|00001780| 20 44 65 63 69 6d 61 6c | 0f 0d 0a 00 10 30 2d 31 | Decimal|.....0-1|
|00001790| 2d 31 0e 73 30 2d 31 2d | 31 32 0e 52 75 6c 65 73 |-1.s0-1-|12.Rules|
|000017a0| 20 6f 66 20 53 69 67 6e | 73 0f 0d 0a 00 10 30 2d | of Sign|s.....0-|
|000017b0| 32 2d 31 0e 73 30 2d 32 | 2d 33 0e 53 63 69 65 6e |2-1.s0-2|-3.Scien|
|000017c0| 74 69 66 69 63 20 4e 6f | 74 61 74 69 6f 6e 0f 0d |tific No|tation..|
|000017d0| 0a 00 10 30 2d 32 2d 31 | 0e 73 30 2d 32 2d 34 0e |...0-2-1|.s0-2-4.|
|000017e0| 53 63 69 65 6e 74 69 66 | 69 63 20 4e 6f 74 61 74 |Scientif|ic Notat|
|000017f0| 69 6f 6e 20 6f 6e 20 61 | 20 43 61 6c 63 75 6c 61 |ion on a| Calcula|
|00001800| 74 6f 72 0f 0d 0a 00 10 | 30 2d 32 2d 31 0e 73 30 |tor.....|0-2-1.s0|
|00001810| 2d 32 2d 38 0e 53 69 6d | 70 6c 65 73 74 20 46 6f |-2-8.Sim|plest Fo|
|00001820| 72 6d 0f 0d 0a 00 10 30 | 2d 32 2d 31 0e 73 30 2d |rm.....0|-2-1.s0-|
|00001830| 32 2d 38 0e 53 69 6d 70 | 6c 69 66 79 69 6e 67 20 |2-8.Simp|lifying |
|00001840| 52 61 64 69 63 61 6c 73 | 0f 0d 0a 00 10 30 2d 35 |Radicals|.....0-5|
|00001850| 2d 31 0e 73 30 2d 35 2d | 32 0e 53 69 6d 70 6c 69 |-1.s0-5-|2.Simpli|
|00001860| 66 79 69 6e 67 20 52 61 | 74 69 6f 6e 61 6c 20 45 |fying Ra|tional E|
|00001870| 78 70 72 65 73 73 69 6f | 6e 73 0f 0d 0a 00 10 30 |xpressio|ns.....0|
|00001880| 2d 33 2d 31 0e 73 30 2d | 33 2d 34 0e 53 70 65 63 |-3-1.s0-|3-4.Spec|
|00001890| 69 61 6c 20 42 69 6e 6f | 6d 69 61 6c 20 50 72 6f |ial Bino|mial Pro|
|000018a0| 64 75 63 74 73 0f 0d 0a | 00 10 30 2d 33 2d 31 0e |ducts...|..0-3-1.|
|000018b0| 73 30 2d 33 2d 34 0e 53 | 71 75 61 72 65 20 6f 66 |s0-3-4.S|quare of|
|000018c0| 20 61 20 42 69 6e 6f 6d | 69 61 6c 0f 0d 0a 00 10 | a Binom|ial.....|
|000018d0| 30 2d 32 2d 31 0e 73 30 | 2d 32 2d 35 0e 53 71 75 |0-2-1.s0|-2-5.Squ|
|000018e0| 61 72 65 20 52 6f 6f 74 | 20 6f 66 20 61 20 4e 75 |are Root| of a Nu|
|000018f0| 6d 62 65 72 0f 0d 0a 00 | 10 30 2d 33 2d 31 0e 73 |mber....|.0-3-1.s|
|00001900| 30 2d 33 2d 31 0e 53 74 | 61 6e 64 61 72 64 20 46 |0-3-1.St|andard F|
|00001910| 6f 72 6d 20 6f 66 20 61 | 20 50 6f 6c 79 6e 6f 6d |orm of a| Polynom|
|00001920| 69 61 6c 0f 0d 0a 00 10 | 30 2d 31 2d 31 0e 73 30 |ial.....|0-1-1.s0|
|00001930| 2d 31 2d 31 34 0e 53 75 | 62 73 74 69 74 75 74 69 |-1-14.Su|bstituti|
|00001940| 6f 6e 20 50 72 69 6e 63 | 69 70 6c 65 0f 0d 0a 00 |on Princ|iple....|
|00001950| 10 30 2d 31 2d 31 0e 73 | 30 2d 31 2d 31 32 0e 53 |.0-1-1.s|0-1-12.S|
|00001960| 75 62 74 72 61 63 74 69 | 6e 67 20 46 72 61 63 74 |ubtracti|ng Fract|
|00001970| 69 6f 6e 73 20 77 69 74 | 68 20 4c 69 6b 65 20 44 |ions wit|h Like D|
|00001980| 65 6e 6f 6d 69 6e 61 74 | 6f 72 73 0f 0d 0a 00 10 |enominat|ors.....|
|00001990| 30 2d 31 2d 31 0e 73 30 | 2d 31 2d 31 32 0e 53 75 |0-1-1.s0|-1-12.Su|
|000019a0| 62 74 72 61 63 74 69 6e | 67 20 46 72 61 63 74 69 |btractin|g Fracti|
|000019b0| 6f 6e 73 20 77 69 74 68 | 20 55 6e 6c 69 6b 65 20 |ons with| Unlike |
|000019c0| 44 65 6e 6f 6d 69 6e 61 | 74 6f 72 73 0f 20 0d 0a |Denomina|tors. ..|
|000019d0| 00 10 30 2d 33 2d 31 0e | 73 30 2d 33 2d 32 0e 53 |..0-3-1.|s0-3-2.S|
|000019e0| 75 62 74 72 61 63 74 69 | 6e 67 20 50 6f 6c 79 6e |ubtracti|ng Polyn|
|000019f0| 6f 6d 69 61 6c 73 0f 0d | 0a 00 10 30 2d 35 2d 31 |omials..|...0-5-1|
|00001a00| 0e 73 30 2d 35 2d 33 0e | 53 75 62 74 72 61 63 74 |.s0-5-3.|Subtract|
|00001a10| 69 6e 67 20 52 61 74 69 | 6f 6e 61 6c 20 45 78 70 |ing Rati|onal Exp|
|00001a20| 72 65 73 73 69 6f 6e 73 | 0f 0d 0a 00 10 30 2d 31 |ressions|.....0-1|
|00001a30| 2d 31 0e 73 30 2d 31 2d | 38 0e 53 75 62 74 72 61 |-1.s0-1-|8.Subtra|
|00001a40| 63 74 69 6f 6e 0f 0d 0a | 00 10 30 2d 33 2d 31 0e |ction...|..0-3-1.|
|00001a50| 73 30 2d 33 2d 34 0e 53 | 75 6d 20 61 6e 64 20 44 |s0-3-4.S|um and D|
|00001a60| 69 66 66 65 72 65 6e 63 | 65 20 6f 66 20 53 61 6d |ifferenc|e of Sam|
|00001a70| 65 20 54 77 6f 20 54 65 | 72 6d 73 0f 0d 0a 00 10 |e Two Te|rms.....|
|00001a80| 30 2d 34 2d 31 0e 73 30 | 2d 34 2d 34 0e 53 75 6d |0-4-1.s0|-4-4.Sum|
|00001a90| 20 6f 66 20 54 77 6f 20 | 43 75 62 65 73 2c 20 46 | of Two |Cubes, F|
|00001aa0| 61 63 74 6f 72 69 6e 67 | 20 74 68 65 0f 0d 0a 00 |actoring| the....|
|00001ab0| 10 30 2d 31 2d 31 0e 73 | 30 2d 31 2d 31 0e 54 65 |.0-1-1.s|0-1-1.Te|
|00001ac0| 72 6d 69 6e 61 74 69 6e | 67 20 44 65 63 69 6d 61 |rminatin|g Decima|
|00001ad0| 6c 0f 0d 0a 00 10 30 2d | 31 2d 31 0e 73 30 2d 31 |l.....0-|1-1.s0-1|
|00001ae0| 2d 37 0e 54 65 72 6d 73 | 0f 0d 0a 00 10 30 2d 33 |-7.Terms|.....0-3|
|00001af0| 2d 31 0e 73 30 2d 33 2d | 31 0e 54 72 69 6e 6f 6d |-1.s0-3-|1.Trinom|
|00001b00| 69 61 6c 0f 0d 0a 00 10 | 30 2d 31 2d 31 0e 73 30 |ial.....|0-1-1.s0|
|00001b10| 2d 31 2d 34 0e 55 6e 62 | 6f 75 6e 64 65 64 0f 0d |-1-4.Unb|ounded..|
|00001b20| 0a 00 10 30 2d 31 2d 31 | 0e 73 30 2d 31 2d 35 0e |...0-1-1|.s0-1-5.|
|00001b30| 55 6e 62 6f 75 6e 64 65 | 64 20 49 6e 74 65 72 76 |Unbounde|d Interv|
|00001b40| 61 6c 73 0f 0d 0a 00 10 | 30 2d 31 2d 31 0e 73 30 |als.....|0-1-1.s0|
|00001b50| 2d 31 2d 37 0e 56 61 72 | 69 61 62 6c 65 20 54 65 |-1-7.Var|iable Te|
|00001b60| 72 6d 0f 0d 0a 00 10 30 | 2d 31 2d 31 0e 73 30 2d |rm.....0|-1-1.s0-|
|00001b70| 31 2d 37 0e 56 61 72 69 | 61 62 6c 65 73 0f 0d 0a |1-7.Vari|ables...|
|00001b80| 00 10 30 2d 37 2d 31 0e | 73 30 2d 37 2d 31 0e 11 |..0-7-1.|s0-7-1..|
|00001b90| 33 78 11 31 2d 61 78 69 | 73 0f 0d 0a 00 10 30 2d |3x.1-axi|s.....0-|
|00001ba0| 37 2d 31 0e 73 30 2d 37 | 2d 32 0e 11 33 78 11 31 |7-1.s0-7|-2..3x.1|
|00001bb0| 2d 63 6f 6f 72 64 69 6e | 61 74 65 0f 0d 0a 00 10 |-coordin|ate.....|
|00001bc0| 30 2d 37 2d 31 0e 73 30 | 2d 37 2d 31 0e 11 33 79 |0-7-1.s0|-7-1..3y|
|00001bd0| 11 31 2d 61 78 69 73 0f | 0d 0a 00 10 30 2d 37 2d |.1-axis.|....0-7-|
|00001be0| 31 0e 73 30 2d 37 2d 32 | 0e 11 33 79 11 31 2d 63 |1.s0-7-2|..3y.1-c|
|00001bf0| 6f 6f 72 64 69 6e 61 74 | 65 0f 0d 0a 00 10 30 2d |oordinat|e.....0-|
|00001c00| 31 2d 31 0e 73 30 2d 31 | 2d 31 31 0e 5a 65 72 6f |1-1.s0-1|-11.Zero|
|00001c10| 2d 46 61 63 74 6f 72 20 | 50 72 6f 70 65 72 74 79 |-Factor |Property|
|00001c20| 0f 0d 0a 00 10 30 2d 31 | 2d 31 0e 73 30 2d 31 2d |.....0-1|-1.s0-1-|
|00001c30| 31 31 0e 5a 65 72 6f 2c | 20 50 72 6f 70 65 72 74 |11.Zero,| Propert|
|00001c40| 69 65 73 20 6f 66 0f 0d | 0a 00 10 30 2d 33 2d 31 |ies of..|...0-3-1|
|00001c50| 0e 73 30 2d 33 2d 31 0e | 5a 65 72 6f 20 50 6f 6c |.s0-3-1.|Zero Pol|
|00001c60| 79 6e 6f 6d 69 61 6c 0f | 0d 0b 00 26 00 00 00 45 |ynomial.|...&...E|
|00001c70| 1c 00 00 4d 16 00 00 10 | 00 00 00 00 00 00 00 4d |...M....|.......M|
|00001c80| 41 49 4e 00 | |AIN. | |
+--------+-------------------------+-------------------------+--------+--------+